PIN DIODE
Filed under by Nahal Ahmed on 7:05 PM
A PIN diode is a diode with a wide, lightly doped 'near' intrinsic semiconductor region between a p-type semi conductor and an n-type semiconductor region. The p-type and n-type regions are typically heavily doped because they are used for ohmic contacts.
The wide intrinsic region is in contrast to an ordinary PN diode. The wide intrinsic region makes the PIN diode an inferior rectifier (the normal function of a diode), but it makes the PIN diode suitable for attenuators, fast switches, photodetectors, and high voltage power electronics applications.
Operation
A PIN diode operates under what is known as high-level injection. In other words, the intrinsic "i" region is flooded with charge carriers from the "p" and "n" regions. Its function can be likened to filling up a water bucket with a hole on the side. Once the water reaches the hole's level it will begin to pour out. Similarly, the diode will conduct current once the flooded electrons and holes reach an equilibrium point, where the number of electrons is equal to the number of holes in the intrinsic region. When the diode is forward biased, the injected carrier concentration is typically several orders of magnitudes higher than the intrinsic level carrier concentration. Due to this high level injection, which in turn is due to the depletion process, the electric field extends deeply (almost the entire length) into the region. This electric field helps in speeding up of the transport of charge carriers from p to n region, which results in faster operation of the diode, making it a suitable device for high frequency operations.
Applications
PIN diodes are useful as RF switches, attenuators, and photodetectors.
- RF and Microwave Switches
Under zero or reverse bias, a PIN diode has a low capacitance. The low capacitance will not pass much of an RF signal. Under a forward bias of 1 mA, a typical PIN diode will have an RF resistance of about 1 ohm, making it a good RF conductor. Consequently, the PIN diode makes a good RF switch..
Although RF relays can be used as switches, they switch very slowly (on the order of 10 milliseconds). A PIN diode switch can switch much more quickly (e.g., 1 microsecond).
The capacitance of an off discrete PIN diode might be 1pF. At 320MHz, the reactance of 1pF is about 500 ohms. In a 50 ohm system, the off state attenuation would be about 20dB -- which may not be enough attenuation. In applications that need higher isolation, switches are cascaded to improve the isolation. Cascading three of the above switches would give 60dB of attenuation.
- RF and Microwave Variable Attenuators
By changing the bias current through a PIN diode, it's possible to quickly change the RF resistance.
At high frequencies, the PIN diode appears as a resistor whose resistance is an inverse function of its forward current. Consequently, PIN diode can be used in some variable attenuator designs as amplitude modulators or output leveling circuits.
PIN diodes might be used, for example, as the bridge and shunt resistors in a bridged-T attenuator.
- Limiters
PIN diodes are sometimes used as input protection devices for high frequency test probes. If the input signal is within range, the PIN diode has little impact as a small capacitance. If the signal is large, then the PIN diode starts to conduct and becomes a resistor that shunts most of the signal to ground.
- Photodetector and photovoltaic cell
The PIN photodiode was invented by Jun-ichi Nishizawa and his colleagues in 1950.
PIN photodiodes are used in fibre optic network cards and switches. As a photodetector, the PIN diode is reverse biased. Under reverse bias, the diode ordinarily does not conduct (save a small dark current or Is leakage). A photon entering the intrinsic region frees a carrier. The reverse bias field sweeps the carrier out of the region and creates a current. Some detectors can use avalanche multiplication.
The PIN photovoltaic cell works in the same mechanism. In this case, the advantage of using a PIN structure over conventional semiconductor junction is the better long wavelength response of the former. In case of long wavelength irradiation, photons penetrate deep into the cell. But only those electron-hole pairs generated in and near the depletion region contribute to current generation. The depletion region of a PIN structure extends across the intrinsic region, deep into the device. This wider depletion width enables electron-hole pair generation deep within the device. This increases the quantum efficiency of the cell.
Typically, amorphous silicon thin-film cells use PIN structures. On the other hand, CdTe cells use NIP structure, a variation of the PIN structure. In a NIP structure, an intrinsic CdTe layer is sandwiched by n-doped CdS and p-doped ZnTe. The photons are incident on the n-doped layer unlike a PIN diode.
Example Diodes
SFH203 or BPW43 are cheap general purpose PIN diodes in 5 mm clear plastic case with bandwidth over 100 MHz. They are used in RONJA telecommunication systems and other circuitry applicati
PIN diode switches are used not only for signal selection, but they are also used for component selection. For example, some low phase noise oscillators use PIN diodes to range switch inductors.
Comments:
Post a Comment